Quantum Monte Carlo for the Electronic Structure of Atoms and Molecules

Brian Austin Lester Group, U.C. Berkeley

BES Requirements Workshop Rockville, MD February 9, 2010

Outline

- Applying QMC to diverse chemical systems
 - Select systems with high interest and impact
 - Phenol: bond dissociation energy
 - Retinal: excitation energy
- Algorithmic details
 - Parallel Strategy
 - Wave function evaluation

O-H Bond Dissociation Energy of Phenol

Ph-OH → Ph-O' + H' (36 valence electrons)

 Model for oxygenated aromatic species involved in incomplete combustion processes.

Participates in green plant photosynthesis.

Broad range of BDEs

Experiment: 86.3-90.1 kcal/mol

• Theory: 86.2-93.4 kcal/mol

• QMC: 87.6 kcal/mol

Goal: Accurate Thermochemistry by QMC

- Geometry optimization has been elusive in QMC
- Vibrational modes needed for correct themochemistry
- Treat electronic and nuclear motion simultaneously.
 - Avoids Born-Oppenheimer approximation
 - Distinctive feature of QMC
 - Theory is straightforward but needs good wave functions.
 - Sidesteps variance problem associated with forces
 - Correct treatement of vibronic coupling

QMC Thermochemistry of Phenol HPC Requirements

Phenol single point energy

- Calculated on Franklin
- 25,000 core hours
- 4096 cores
- 15 MB memory / core
- 3 GB storage

Phenol thermochemistry

- Experience is limited, cannot estimate CPU time directly
 - Compare to brute-force fit of potential energy surface: ~1000 points
 - **25,000,000** core hours
- Minimal increase in memory requirements.
- 50 GB storage

S₀-S₁ Excitation Energy of Retinal Analogs

- Retinal excitation is intial step of vision.
- Photosynthetic chromophore in bacteriorhodopsin
- Picosecond isomerization; frequent subject of ultrafast spectrocopic experiements
- Large discrepancy between theory and experiment
 - CASPT2 / 6-31G* 2.28 eV
 - Absorbtion spectroscopy
 2.03 eV
 - QMC (in progress on Franklin) 1.9(3) eV

Goal: Large Scale Modeling

- Largest calculation to-date: 314 electrons (porphyrin)
- 50x increase in CPU time treats ~1500 electrons
 - 250 carbon atoms
 - Protein reaction centers
 - Add sidechains and counter-ions to retinal model
 - Can include larger protein environment by coupling QMC region to MM force field.
 - 375 silicon atoms (with effective core potentials)
 - Fully correlated model of quantum dots

Large Scale Modeling of Retinal HPC Requirements

Retinal

- Calculated on Franklin
- 500,000 core hours / state
- 4096 cores
- 125 MB memory / core
- 6 GB storage

Rhodopsin binding pocket

- 25,000,000 core hours
- 5 GB memory / core (or modify algorithm)
- 100 GB storage

Algorithmic Details: Parallel Strategy

- QMC offers simple, high level parallelism.
 - $E = \sum_{i} w_{i} E_{L}(X_{i}) \qquad E_{L}(X_{i}) = H \Psi(X_{i}) / \Psi(X_{i})$
 - Need many X_i to reduce MC error
 - Distribute X_i to many cores
 - Collective MPI routines for averaging
- Load imbalance:
 - Branching creates more walkers on some nodes than others.
 - Addressed by on-the-fly redistribution of walkers
- Nearly all CPU time used to evaluate $\Psi(X_i)$
 - Evaluation of $\Psi(X_i)$ may exploit low-level parallelization

Algorithmic Details: Wave Function Evaluation

- CI Expansion
 - Linear combination of Slater determinants
- Computational Steps
 - Evaluate basis functions
 - Evaluate molecular orbitals
 - Linear transformation of basis functions
 - Evaluate determinant
 - Cubic scaling, but not rate limiting

- Boys-Handy Function
 - Explicit 2-body and 3-body correlation
 - Power series in interparticle distance functions
- Computational Steps
 - Evaluate distance functions
 - Sum over particle pairs, triples
 - Trace over matrix product

Use sparsity, matrix compression to acheive linear scaling